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Abstract 

Photon transport in a multiple scattering medium is critically dependent on scattering statistics, in particular 
the average number of scatterings. A superposition technique is derived to accurately determine the average 
number of scatterings encountered by reflected and transmitted photons within arbitrary layers in plane- 
parallel, vertically inhomogeneous clouds. As expected, the resulting scattering number profiles are highly 
dependent on cloud particle absorption and solar/viewing geometry. The technique uses efficient adding and 
doubling radiative transfer procedures, avoiding traditional time-intensive Monte Carlo methods. Derived 
superposition formulae are applied to a variety of geometries and cloud models, and selected results are 
compared with Monte Carlo calculations. Cloud remote sensing techniques that use solar reflectance or 
transmittance measurements generally assume a homogeneous plane-parallel cloud structure. The scales 
over which this assumption is relevant, in both the vertical and horizontal, can be obtained from the 
superposition calculations. Though the emphasis is on photon transport in clouds, the derived technique is 

applicable to any multiple scattering plane-parallel radiative transfer problem, including arbitrary combina- 
tions of cloud, aerosol, and gas layers in the atmosphere. 0 2000 Elsevier Science Ltd. All rights reserved. 

Keywords: Cloud remote sensing; Multiple scattering; Scattering statistics; Adding/doubling method of technique; 
Photon diffusion 

1. Introduction 

Determination of photon path length distributions, including mean path length, average number 
of scatterings, etc., has been pursued by a number of investigators over the years with application to 
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molecular and cloudy atmospheres. Interests include atmospheric line absorption [ 11, comparison 
with atmospheric absorption calculations obtained from traditional numerical codes [2], and 
cloud lidar studies where the path length distribution undergone by returning photons is related to 
the spread in the time delay of the return signal [3]. 

Monte Carlo techniques can be used to determine the mean optical path of reflected and 
transmitted radiation from clouds, as well as the path length distribution [4,5]. However, calcu- 
lations generally require significant computational time for acquiring sufficient photon statistics. 
Another possible technique is through the inverse Laplace transform of the path absorption 
integral [ 11. This technique can provide the photon path distribution, though numerical difficulties 
and problems with uniqueness can occur [ 1,2,6]. Mean path length and other moments can also be 
found by differentiating the integral equation with respect to single scattering albedo and optical 
thickness [1,6,7]. The average number of scatterings is, of course, closely related to the average 
photon path length (first moment of path length distribution) and is a useful quantity in its own 
right. 

A fast and efficient means of calculating the average number of scatterings in arbitrary layers 
of plane-parallel, vertically inhomogeneous, cloudy atmospheres has been developed. The 
new technique is derived from superposition principles and can be implemented in a straightfor- 
ward way with standard adding/doubling numerical routines. The superposition formulae 
are applicable to conservative or absorbing layers with arbitrary phase functions. The vertical 
distribution of layer scatterings, as well as the average number of scatterings for the overall cloud, 
can be determined for arbitrary incident illumination and for emerging photons reflected or 
transmitted into specific directions (e.g., bidirectional reflectance and transmittance) or into 
a hemisphere (flux reflectance and transmittance). Calculations using the superposition formulae 
have been made in visible and near-infrared cloud remote sensing bands, for clouds of varying 
optical thickness and liquid water droplet size profiles. In this paper we show selected results and 
comparisons with Monte Carlo calculations. Though the emphasis is on terrestrial clouds, the 
technique is suitable for any general plane-parallel atmosphere with absorbing and scattering 
layers. 

Several applications to cloud remote sensing were the impetus for this work. First, the vertical 
distribution of photon scattering numbers can be used to determine the effect of vertically 
inhomogeneous cloud droplet sizes on retrievals. Second, the average number of scatterings is 
useful for estimating horizontal transport in plane-parallel layers. Both results can aid in under- 
standing the effect of heterogeneous clouds fields on remote sensing problems by giving the 
relevant scales over which homogeneous, plane-parallel assumptions need be valid. These applica- 
tions are the subject of ongoing studies. 

The superposition formulae are derived in Section 3. These derivations are couched in the 
adding/doubling vector-matrix notation developed by Twomey et al. [7,8] and Twomey [9]. 
Though the notation is straightforward, the derivations are quite general and all equations should 
be easily renderable to other adding/doubling formulations (e.g., Hansen and Travis [lo]). A short 
summary of the notation is described in Section 2, though the above references should be consulted 
for a complete discussion. However, while important for the calculations presented in Section 4, 
proficiency with this notation is not essential to understanding the concepts of Section 3 (a simple 
two-stream version of the derivation is satisfactory for such purposes). An application to cloud 
remote sensing is described in Section 5. 
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2. Vector-matrix notation 

In the Twomey adding/doubling method [7-91, radiation at any level in a plane-parallel medium 
is separated into upward and downward propagating intensity (radiance) beams represented by 
vectors, e.g., u and d, respectively. Elements of these vectors indicate the average intensity within 
some chosen p-bin, where p is the cosine of the zenith angle (unlike other doubling techniques 
where matrix formulations are derived with vector elements being the intensity at discrete p values). 
For instance, in the current work, ten equal-width bins were chosen for each hemisphere with 
central values of pi = 0.05,0.15, . . . ,0.95 for i = 1,2, . . . , N with N = 10. This constitutes a 20- 
stream computation. The redirection of radiation from a particular p-bin into all other p-bins is 
given by the columns of a reflectance matrix, S, and two transmittance matrices, one for diffuse and 
one for directly transmitted radiation, T and E, respectively. Each matrix accounts for scattering 
into a hemisphere and is therefore of size 10 x 10 in this study. As an example, consider some 
isolated plane-parallel medium with a known reflectance matrix S which is illuminated by an 
incident downward propagating intensity vector d. Then the product u = Sd gives the upward 
propagating reflected intensity vector while (T + E)d is a vector describing the total transmitted 
intensity field. In other words, the elements i,j of the matrices gives the scattered intensity into the 
pi direction due to intensity incident from the pj direction. The adopted sign of ~1 is not important 
with the separation of radiation into two hemispheres, as long as its understood that S describes 
incident radiation scattered into the same hemisphere, while T and E describe radiation transmit- 
ted into the opposite hemisphere. With azimuthal symmetry, the flux passing through any bin is 
2xpili Ap, where 1; is the intensity in bin pi. TO account for an incident solar flux (irradiance) with 
this notation, the average intensity corresponding to an angular bin size centered at pLj = p. is set 
to a value such that its angular-integrated flux is PjFoT where F. is the solar flux, while all other 
elements of the incident vector are zero. 

The scattering phase function is transformed directly into this separate hemisphere, plane- 
parallel geometry matrix notation at the outset, before the adding/doubling procedure begins. Two 
phase function matrices, termed B and P, are used for this purpose, where B describes single 
scattering back into the incident hemisphere and P for scattering into the opposite hemisphere (cf. 
[S]). With this method, the angular integration for all incident and scattered plane-parallel 
geometry directions is done one time only in the calculation of these phase function matrices. For 
a single-scattering differential layer with the phase function normalized to unity, Sdt = GoM- ‘B dz 
and Tdr = fioM-‘Pdz, where M is a diagonal matrix with elements pi, dz the layer’s optical 
thickness, and Coo the single scattering albedo. The B, P matrices have been introduced here for 
completeness, but methods for their calculation from the phase function are not essential to the 
derivations that follow; the starting point assumption is that Sdr and Tdr are known. The S and 
T matrices for a finite layer are found by adding/doubling up from the differential layer, while E is 
simply a diagonal matrix with elements exp{ - r/pj>. A non-zero surface reflectance can be 
represented by an additional reflectance matrix added beneath the cloud, though we concentrate 
primarily on black surfaces in this study (approximately valid for ocean surfaces in the spectral 
bands of interest). All matrices and vectors can be decomposed into Fourier components to provide 
azimuthal detail. However, only the azimuthally independent terms are considered in the present 
work, which should be sufficient for the pertinent cases of clouds with large orders of scatterings 
and for verification of the formulae derived in the next section. 
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A common normalization for scattered intensity is via bidirectional reflectance and transmit- 
tance. For an incident solar irradiance in direction pj, bidirectional reflectance for an azimuthally 
independent reflected intensity is given in the present notation as (N/2)Si,j/pj, where N is the 
number of ,u-bins, and similarly as (N/2)(Ti,j + Ei,j)/pj for transmittance. Albedo and flux trans- 
mittance, found by integrating over the viewing hemisphere, becomes 1:: IpiS,,j/pj and 
1:: I pi( Ti,j + Ei,j)/pj, respectively, where pi is the viewing direction. 

In the case of a two-stream calculation, all vectors and matrices reduce to scalars; S becomes the 
flux reflectance (albedo) and T + E the flux transmittance. It may be useful to consider this 
simplified situation when examining the derivation that follows. 

3. The average number of scatterings in arbitrary layers 

We wish to derive the average number of scatterings encountered by reflected and transmitted 
photons within any arbitrary layer of a plane-parallel, vertically inhomogeneous medium via 
adding/doubling numerical procedures. To the extent that the fundamental derivation follows the 
incorporation of a differential layer into the interior of a finite cloud, we use the generic term 
superposition to describe the method (invariant imbedding is a closely related process, see review by 
Hansen and Travis [lo]). We begin by determining the fraction of incident solar radiation that 
undergoes a scattering in an infinitesimal layer imbedded between two finite layers. A general 
schematic for the problem at hand is shown in Fig. 1. Two separate plane-parallel, inhomogeneous 
layers are shown, each with different reflectance and transmittance matrices. Because we allow for 
vertical inhomogeneities within each layer, the scattering matrices will in general depend on 
whether radiation is incident from above or below the layer, indicated by superscripts a and b, 
respectively. The surface below layer 2 is assumed to be black for the moment; modification of the 
equations for a reflecting surface is described at the end of this section. 

In the following, the vertical optical path variable is referred to as optical depth, z, measured 
from cloud top downward, while the term optical thickness, zC, is used to indicate the overall 
optical depth to cloud base. For example, we may refer to a cloud level at an optical depth of 5, 
in a cloud with optical thickness 10. For the sake of clarity, the reader may wish to 
consider a simple two-stream rendition of the derivation in which case all vectors and matrices 
can be substituted with familiar scalar equivalents. The derivation proceeds in the following four 
steps: 

3.1. Determination of intensity vectors u and d, at an optical depth of z = zl, for a cloud with total 
optical thickness z, = z1 + z2 

First, consider the upward and downward intensities at the level z = zl, designated as u’ and d’, 
respectively, in the absence of the infinitesimal layer. Then (Ty + E) gives the component of d’ due 
to the initial transmission of incident radiation through layer 1, before interaction with layer 2; 
likewise S”, S; (T’; + E) is the next higher-order component of d’ after reflection from the lower and 
then upper cloud layer (note that the order of the multiplication is important because of the matrix 
formulation). Accounting for all higher-order reflections between the layers yields the following 
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Fig. 1. A homogenous infinitesimal layer of optical thickness dr, is imbedded between two inhomogeneous plane-parallel 
layers having total optical thicknesses r1 and r2. The matrix S represents a layer’s reflectance, T the diffuse transmittance, 
and E the direct transmittance. Because of vertical inhomogeneity, the reflectance and diffuse transmittance for radiation 

incident from above a finite layer is different than for radiation incident from below (indicated by subscripts a and b, 
respectively). Upward and downward propagating intensities originating in the infinitesimal layer, indicated by the 
vectors u and d, respectively, represent only those photons which have had a scattering in the dr layer, and are a function 
of the scattering properties of all three layers. 

intensities at the boundary: 

u’(z~,z~) = Sf$(I + (Sb,S;) + (StS;)2 + ***)(‘I’; + El)vi,,y 

d’(T1,Tc) = (I + (StS;) + (Sb,Sa2)2 + ***)(T”, + El)Vinc, 

where I is the identity matrix, and vine represents the downward solar intensity vector at cloud top 
where all elements of the vector are zero except in the bin corresponding to the solar position 
pj = ~0 (in th e t wo-stream case, all quantities are reduced to scalars so vine can be equated with 
p. F. and I = 1). The infinite series, common to all superposition formulations, converges for either 
non-conservative scattering or finite optical thicknesses. 

We now add a homogeneous layer with thickness dz between the two finite layers. By making the 
thickness arbitrarily small, higher-order scatterings with the layers can be ignored and we can 
consider only those photons which undergo a single scattering in the infinitesimal layer sometime 
during their multiple passings across the layer l-2 interface. All such photons contribute a total 
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intensity at the interface given by 

~(71 A) = f&r d’h ,L) + Tcir 01 ,L), 

With substitution of Eq. (l), 

u(zl ,zc) = [(S,, + Tc~r f% )(I + (Sbl St) + (Sb, Sa2 I2 + . * e KC + El )lVinc 

= Utz 1 Tzc binc 7 

d(zl ,zc) = [(Tdt + S,,S;)(I + (St Sa2) + (SF Su2)2 + * * * )(T? + El )IVinc 

= D(z 1 ,zc )Vinc 9 (2) 

where the newly introduced matrices U, D are of primary interest since in the present application of 
an incident solar illumination, vine just serves to sift out the appropriate column of those two 
matrices. 

3.2. The escape matrices for intensity at optical depth z = zl, for a cloud with total optical thickness 

7, =z1 +z2 

Now that the net upward and downward intensities at the dz layer, u and d, respectively, have 
been determined, we need to calculate the fraction of these intensities which escape out cloud top or 
base and contribute to the overall reflected and transmitted signal. This fraction accounts for the 
transport of intensities u and d to the cloud boundaries and can be represented in our present 
mathematical framework by escape matrices, designated as Q:,Q:,Qs,Qt respectively. The super- 
scripts r and t are used to represent an escape matrix for transport contributing to reflectance (i.e., 
transport out the top of the cloud) and transmittance (transport out the bottom), respectively; 
subscripts indicate transport of the upward or downward intensity vector. So the component of 
reflected intensity due to photons which have had a scattering in the infinitesimal layer is 

Q:u + Qid = (QLU + QiD)Vinc; the transmitted component is Q:u + Qkd = (Q:U + QLD)Vi,,. 
These matrices depend on the surface reflectance beneath the cloud. For now, we assume a black 
surface. Accounting for multiple reflections between the two finite cloud layers, the superposition 
formulae for the escape matrices at the optical depth zl are given by 

Q:(~,z,) = (T; + &)(I + (S”,S;) + (Su,Sb,)2 + -), 

Q&,z,) = (Tb, + &)(I + (S;S:) + (S;Sbl)2 + -)S;, 

Q:(~,T,) = (T; + E,)(I + (S’i S;) + (S”lS;)2 + -)S”,, 

Q:(Q ,zc) = (T; + E2)(I + (Sb,S;) + (Sb,S$)2 + - ). (3) 

This reduces to the homogeneous cloud case 
of thermal radiation from within a cloud. 

derived by Twomey [9] and applied to the emergence 
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3.3. The number of scatterings in an in$nitesimal layer at an optical depth of z = zl , for a cloud with 

total optical thickness z, = zl + z2 

The product of Eq. (3) premultiplying Eq. (2) represents the differential part of the total reflected 
and transmitted intensities consisting of photons having undergone a scattering in the infinitesimal 
layer. Specifically, these photons have scattered just once within the layer since the derivation 
assumes that higher-order scatterings become insignificant as the layer is made arbitrarily small. 
Since the number ofphotons traveling in some direction (solid angle) is proportional to intensity, 
normalizing the above differential intensity by the total intensity in the same exit direction is 
equivalent to the fraction of all such directed photons having one scattering in a layer dz, located at 
an optical depth z, in a medium of total thickness 7,. We can introduce a vertical distribution 
function c!&z,) such that [*(z,z,) dz gives this fraction for reflected photons, and a similar function 
{‘(zJ,) dz describing the transmitted fraction. Including an explicit directional dependence in the 
matrix notation, the fraction of photons that have a scattering in the infinitesimal layer and go on 
to contribute to a bidirectional reflectance or transmittance signal, are given by 

irtz z I-1 ~ )dz = (Qb(z,zc)U + Qi(z,zcP)i,j {Z’(x,zc))i,j 

7 CT iy j 

si,j(Tc) = si,j(zc) 

[ttz z 

’ = 

(Zt(z9zc))i.j 

3 CT 

~ ~ ) dz = {QL (z,zc)U + Qi(T,TcP)i j 

i3 j 

Ti,jtzc) + Ei,j(zc) Ti,j(zc) + Ei,j(zc)’ 

(44 

where the Z matrices are introduced for convenience, and pi and pj are the cosine of the zenith 
viewing and solar angle, respectively. We can also define similar fractions for photons contributing 
to albedo and flux transmittance by integrating both numerators and denominators over a hemi- 
sphere (summation over pi as described in Section 2) i.e., 

I;= 1 PitTi,jtTc) + Ei,j(zc))’ 

t4w 

Eq. (4b) gives the fraction of the reflected and transmitted Jux consisting of photons having 
undergone a scattering in the infinitesimal layer. Finally, on substitution of Eqs. (2) and (3) we can 
write 

Zr(~qc) = (Tb, + E,)(I + (S;S: ) + a-- )[S,, + TcirS; + %(L + %%)I 

x (I + (Sb,S;) + --)(T”, + El), 

Zt(q~,) = (T; + E2)(I + (S:S;) + + - + )[L + &r % + S”, CL% + WI 

x(1 + (S:S;) + -)(T”, + E,), (5) 

where the differential terms are given in Section 2. Though Eq. (5) may appear a bit intimidating, it 
can be easily integrated into existing adding/doubling codes which already contain similar 
calculations. 
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3.4. The average number of scatterings in a jinite layer 

By definition, Eqs. (4a) and (4b) give the total number of reflected (transmitted) photons, either 
passing through a hemisphere or into a particular direction, which have had a scattering in the 
layer dz, divided by the corresponding total number of reflected (transmitted) photons. So this 
quantity is also the average number of scatterings in the layer experienced by all such reflected or 
transmitted photons. This average must be much less than one since the layer is made infinitesimal- 
ly thin and only single scattering events can occur. 

The average number of reflected photons with scatterings in a finite layer between z, and zb is 
therefore given by the integration of Eq. (4) from z, to zb, which may now be greater than one since 
more than one scattering may occur in the finite layer for each photon. Likewise, the average 
number of scatterings for all reflected and transmitted photons, N,’ and Ni, respectively, in 
a medium with total optical thickness zC, can be found from 

N; = “T’(t,r,) dz, 
s 0 

N; = “&,) dz, 
s 0 

(6) 

where the directional dependence of either Eq. (4a) (average number of scatterings for photons into 
viewing direction pi) or Eq. (4b) ( average number of scatterings for photons into a hemisphere) is 

understood; in both cases the solar flux is incident from the pj direction. The integrals should be 
recognized as averages for a large number of reflected or transmitted photons. 

Photon counts are equivalent to flux, not intensity. Accordingly, Eqs. (4a) and (4b) are consistent 
with the average number of photon scatterings into a hemisphere being the flux-weighted average 
of the average number of scatterings into viewing directions p, i.e., 

(7) 

where I is the intensity, azimuthal variability is ignored, and the summation over all pi bins gives 
the vector-matrix implementation. 

A non-zero surface reflectance is accounted for via Eq. (5) by replacing S: with the reflectance 
matrix found from superposition of layer 2 over a surface described by reflectance matrix &. This 
leads to the modification 

S; + S; + (T: + E,)S,,,(I + S;Ssf, + (Sb,SsfJ2 + --- )(T; + E2). 

Likewise, the net layer 2 transmittance (T: + E2) is now enhanced by multiple reflections off the 
surface, becoming 

(T; + E,) -+ (I + S&c + (S;SsfJ2 + --- )(T; + E2). 

The result is that both reflected and transmitted photons have more scatterings, especially in lower 
layers of the cloud (see Fig. 4 in the following section). 

There is reciprocity upon exchange of solar and viewing directions for the bidirectional form of 
these equations. Though we have purposely ignored any mention of the sign of p, it is useful to do 
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so now, especially in discussion of the transmittance weighting. Let propagation in a downward 
direction correspond to - 1 L p < 0 and propagation in an upward direction to 0 < ~1 I 1 
(following Chandrasekhar [ 111). The reflectance scattering distribution can then be written more 
explicitly as [‘(z, zc, + 1~1, - 1~~1) indicating downward propagating incident radiation scattered 
back into the upward hemisphere. Reciprocity for the reflectance weighting then becomes 

m, zc, + IA - IPOI) = i’( z, zc, + Jpol, - 1~1). Transmitted radiation emerges into the same hemis- 
pheric direction as the incident, and so the weighting function is written as [‘(z, zc, - 1~1, - l/~~l) 
for radiation incident at cloud top. The reciprocity relation for the transmittance weighting is 
then given by the c’(z, zc, - 1~1, - lpo 1) = [‘( 2, z,, + l,uo 1, + lpi), where the latter function describes 
upward propagating radiation incident at cloud base. Note that an exchange of directions 
for transmittance involves both a sign change and angle substitution. If the cloud is homo- 
geneous, then transmittance functions and weightings for radiation incident from both above and 
below the cloud, at the same set of angles, are equivalent with respect to the incident level, 
i.e., [‘(z, z,, - IA - IPO I) = i’k - ~,~c 7 + 1~1, + 1~~1) and therefore reciprocity extends to 

ik zc 7 - IA - IPO I) = k, - 7, zc, - IPOI, - IPI). I n other words, the transmittance scattering 
distribution for homogeneous clouds is simply inverted with respect to optical depth upon 
exchange of angles in the same hemisphere. The last statement turns out to be approximately true 
even for the inhomogeneous clouds discussed in the next section. Similarly, normalizations of the 
scattering number distributions, Ni and Nk, also obey reciprocity. 

Though the preceding derivation was developed for use in cloud remote sensing problems, it is 
applicable to any plane-parallel, vertically inhomogeneous, multiple scattering medium illumin- 
ated by a plane-parallel flux. General incident illuminations can be handled by properly specifying 
the incident intensity vector vine and making corresponding summations over the index j. While 
only the azimuthally averaged component of the radiation field is explicitly considered, Fourier 
components can be added to the adding/doubling formulation in the usual manner. 

4. Results and Monte Carlo comparisons 

The vertical distribution of the average number of scatterings is shown in Fig. 2 for reflected 
and transmitted photons in four solar spectral bands commonly used in cloud remote sensing (0.66, 
1.6, 2.2, and 3.7 urn). Calculations are for the bidirectional case (Eq. (4a)) and a homogeneous 
liquid water cloud of optical thickness 8. Cloud droplet sizes are described by a gamma distribution 
[lo] with a 10 urn effective radius and an effective variance of 0.10. Other details of the 
solar/viewing geometry are given in the caption. Since optical path is wavelength dependent 
through the extinction efficiency, Qe, both the optical thickness and ordinate are given as the path 
amount after scaling to a common extinction efficiency of 2.0 (i.e., z + 27/Qe). In this way, scattering 
number distributions can be directly compared among the four spectral bands. The liquid water 
droplet single scattering parameters in these bands, averaged over typical imaging instrument 
spectral response functions used in cloud remote sensing [ 121, are given in Table 1. Droplet 
absorption is seen to increase with band wavelength, from zero in the visible to 10% in the 3.7 urn 
band. 

The vertical distribution for reflected photons in Fig. 2 peaks just below cloud top and then 
decreases towards cloud base. This is in contrast to the transmittance distribution which is 
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Table 1 

Scattering parameters averaged over typical cloud remote sensing instrument 
spectral response functions, for a cloud droplet size spectra given by a gamma 
distribution with an effective radius of 10 urn and a 0.10 effective variance 

Spectral band Single scattering 

(w-4 albedo, Coo 
Asymmetry 
parameter, y 

Extinction 
efficiency, Qe 

0.66 1 .ooo 0.861 2.10 

1.6 0.994 0.843 2.19 

2.2 0.979 0.834 2.25 

3.7 0.900 0.794 2.33 

relatively symmetric with optical depth, showing a broad maximum throughout the middle layers 
of the cloud. Scattering numbers are seen to decrease with droplet absorption as expected. 
The integral of the distributions (Eq. (6)) gives the average number of scatterings for all 
photons directed into the viewing direction, and is shown in the legend. Both superposition and 
Monte Carlo calculations are shown in Fig. 3 for the 2.2 ym band and the same cloud and 
geometry of Fig. 2. In order to compare directly with the 20-stream implementation of the 
superposition matrix formulation (see Section 2), Monte Carlo statistics are collected for solar and 
viewing angular bin sizes of Ap = & 0.05. A relatively small discrepancy is seen for reflectance 
numbers near cloud top and a small offset for transmittance numbers. However, this difference 
disappears when the scattering number distribution for reflected flux (albedo) and transmitted flux 
is compared, suggesting some small difference in the implementation of the phase function in the 
two techniques. 

The effect of a Lambertian surface reflectance of 0.30 on the flux vertical scattering distribution is 
shown in Fig. 4 for the visible band; for comparison, the distribution for a black surface is also 
shown. With the reflecting surface, scattering numbers increase in lower layers as photons reflected 
from the surface are returned towards cloud base. Though the total scattering number in the 
uppermost layers can never decrease by addition of a reflecting surface, the average number can. 
This explains the slight decrease near cloud top in the reflectance distribution plot. Evidently, the 
great majority of additional reflected photons resulting from surface scattering are those fortunate 
enough to get transmitted through the uppermost layers without a scattering. Since the total 
number of reflected photons increase with the addition of the reflecting surface, the average number 
in layers without additional scatterings decreases. Both cases are compared with Monte Carlo 
calculations and the agreement is seen to be excellent. 

A vertical structure in droplet absorption (i.e., effective radius) can also influence the scattering 
distribution. This can be explored with the superposition formulae which can easily incorporate 
plane-parallel, vertically inhomogeneous layers. Fig. 5 shows the effect of several analytic vertical 
profiles of effective radius on the reflectance scattering distribution in the 2.2 urn band. The linear 
profile means linear with optical depth, for cloud base and cloud top effective radii of 5 and 12 urn, 
respectively. Using these same boundary conditions, the adiabatic distribution refers to the droplet 
size profile resulting from a cloud parcel rising along a moist adiabat. This gives liquid water 
concentration increasing linearly with geometric height, and for a constant number of cloud 



S. Platnick /Journal of Quantitative Spectroscopy & Radiative Tramfer 68 (2001) 57- 73 67 

cloud 0 

top 

cloud 
base 8 

t/y, , , , , , , / , , , , , , , , 

0.0 1 .o 2.0 3.0 4.0 

0.66 pm (Nl =18.1) 

--_ 1.6 pm (Nl=17.2) 

-.- _ 2.2 pm (Nl=l4.6) 

3.7 pm (Ni= 7.2) 3.7 pm (Ni= 7.2) 

Average number of scatterings - 
reflectance distribution 

cloud o 
1 

;fyFq-- 
3 - 

4 - 

5 - 

r 

6 

7 

: 

~ 0.66 pm (I$ =17.2) 

--_ 1.6 vrn (Ni =18.0) 

- -._ 2.2 pm (/Vi =16.5) 

.’ ... 
.’ 

3.7 pm (A/i =12.2) 

cloud 1 y’-; , / , , , , , , , , 
base 8 ’ 

1.0 2.0 3.0 4.0 

Average number of scatterings - 
transmittance distribution 

Fig. 2. Vertical distribution of the average number of scatterings per differential layer for (a) reflected, and (b) transmitted 

photons in four spectral bands from 0.66 to 3.7 urn. Calculated for a homogeneous cloud with optical thickness 8 and 
a droplet effective radius of 10 urn, cosine of solar and viewing angles of p. = 0.65 and ,u = 0.85, respectively, and an 
azimuthal average. IV: and IV: refer to the average number of scatterings for all reflected and transmitted photons, 
respectively, found by integrating the distributions. 

droplets, effective radius decreasing towards cloud base as (a, - al 2)li5 where the a’s are constants 
determined by the boundary conditions. Reflected photons penetrate deeper into the cloud for the 
linear size profile as smaller effective radii, and therefore less absorption, are found at higher levels. 
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Fig. 3. Vertical distribution of the average number of scatterings per differential layer for reflected and transmitted 
photons in a 2.2 urn spectral band. Results using superposition formulae (lines) are compared with Monte Carlo 
calculations (symbols) for the cloud model and geometry described in Fig. 2. Monte Carlo results are averaged over 
angular bin sizes of Ap = & 0.05. NL and iVI; refer to the average number of scatterings for all reflected and transmitted 
photons, respectively. 
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Fig. 4. Dependence of the scattering number distribution on Lambertian surface albedo (ASsc) in a visible band (0.66 urn) 
showing both superposition formulae and Monte Carlo results. Calculations are made for p. = 0.65, flux reflectance 
(albedo) and transmittance, and the cloud model described in Fig. 2. Ni and Ni refer to the average number of scatterings 
for all reflected and transmitted photons, respectively. 
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Fig. 5. Vertical distribution of the average number of scatterings per differential layer for reflected photons in a 2.2 pm 
spectral band as a function of three effective radius profiles discussed in the text. Calculated for the cloud model and 
geometry described in Fig. 2. 

The distribution for a homogeneous cloud with effective radius 10 urn is also shown. Though the 
differences between the curves appear slight, they may give rise to noticeable discrepancies in 
droplet size remote sensing retrievals [ 131. 

A final check of the superposition formulae is to compare the average number of scatterings for 
the entire cloud, Ni and Ni, with Monte Carlo calculations across a large range of optical 
thicknesses and droplet absorption. These comparisons are shown in Fig. 6. The agreement is 
excellent, and comparable with results from other studies [4,5,7]. 

5. Applications 

An efficient method for determining photon scatterings in individual layers of a vertically 
structured cloud is interesting in its own right. In addition, such calculations can aid in understand- 
ing the effect of heterogeneous clouds fields on remote sensing problems by giving the relevant 
scales over which homogeneous, plane-parallel assumptions need be valid. 

A normalized vertical scattering distribution gives information regarding the relative influence of 
individual layers on the path history of photons. This distribution may then be used to qualitatively 
understand, if not estimate, the effect of vertical cloud inhomogeneity on the remote sensing of 
cloud effective radii from solar reflectance measurements [ 131. Such retrievals use the same visible 
and near-infrared bands discussed in the previous section. Since Eq. (6) is the normalization for the 
function [, a normalized weighting function proportional to the number of scatterings in each 
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Fig. 6. Average number of scatterings for all (a) reflected, and (b) transmitted photons as a function of cloud optical 
thickness in four spectral bands. Monte Carlo calculations (symbols) are compared with superposition calculations (lines) 
for a homogeneous cloud with an effective radius of 10 urn, and the geometry of Fig. 2. Monte Carlo results are averaged 
over angular bin sizes of Ap = _+ 0.05. 

. 

vertical layer is given as: 

WyT,Tc) = Jy 

S 

w’(T,J,) = y . 
S 

(8) 



S. Platnick /Journal of Quantitative Spectroscopy & Radiative Transfer 68 (2001) 57- 73 71 

cloud 

top 
0 

7 

cloud base 8 

0.0 0.2 0.4 0.6 

cloud o 
top 

cloud 
base 

cloud 
top 

cloud 
base 

8 
0.0 0.2 0.4 0.6 

0.0 0.2 0.4 0.6 

Normalized scattering number distribution 

(4 

cloud 
base 

cloud 
top 

cloud 
base 

4 _ ..... p~O.65 

7- 

0.0 0.1 0.2 

c .- 
.c C 3- 
3 

4- 

7- 

0.0 0.1 0.2 

“0.0 0.1 0.2 

Normalized scattering number distribution 

(b) 

Fig. 7. (a) Dependence of the normalized scattering number distribution for bidirectional reflectance on the cosine of the 
viewing angle, p, for the three near-infrared bands of Table 1, ,u~ = 0.65, and a homogeneous cloud with effective radius 

10 pm. The distribution for reflected flux, or albedo, is also shown. (b) Same as Fig. 7(a), but for bidirectional and flux 
transmittance. 
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The directional dependence is understood, coming into play via Eqs. (4a) and (4b). Examples 
of these functions are shown in Fig. 7 for the three cloud droplet absorbing bands as a 
function of bidirectional viewing angle as well as the hemispheric view. Though calculations are 
for a homogeneous cloud with 10 urn effective radii, the effective radius profiles of Fig. 5 
would give similar looking normalized distributions. As expected, there are relatively 
more scatterings near cloud top as both reflectance zenith viewing angle and droplet 
absorption increase (Fig. 7a). A sensor viewing a vertically structured cloud with these bands 
from the more oblique angles would therefore infer a droplet size representative of higher 
levels in the cloud compared with nadir view. Similarly for transmittance where viewing angle now 
refers to an observer below cloud (Fig. 7b). The hemispheric flux results are also 
shown. 

For horizontal transport, the root-mean-square displacement of reflected and transmitted 
photons in a plane-parallel, vertically inhomogeneous medium can be estimated from diffusion 
theory if the average number of photon scatterings is known [13]. Such diffusive transport is 
therefore derivable from the same efficient superposition formula already presented. This horizon- 
tal displacement can then be used to assess the scales over which horizontal inhomogeneities are 
important in remote sensing problems. A detailed discussion of horizontal transport in visible and 
near-infrared remote sensing bands, using results from the current work, is presented in an 
accompanying paper [ 14). 

6. Conclusions 

The average number of scatterings in an arbitrary layer of a plane-parallel, inhomogeneous 
cloud has been derived from superposition principles. The formulae have been couched in 
adding and doubling radiative transfer notation, and can therefore be implemented in a straight- 
forward way from existing adding/doubling code. Calculations have been made for bidirectional 
reflectance and transmittance from a liquid water droplet cloud at various combinations of 
solar and viewing angles, as well as for reflected and transmitted flux. Results were shown for 
typical reflectance-based cloud remote sensing spectral bands located in atmospheric windows 
from the visible (conservative scattering) through the near-infrared (significant droplet absorption). 
Selected results have been compared with time-intensive Monte Carlo calculations, and the 
agreement was found to be excellent. Though the current effort was limited to the azimuthally 
averaged component of the radiation field, a Fourier expansion can be included in the 
adding/doubling formulation. 

This simple and fast method for determining photon scatterings in individual layers of a 
vertically structured cloud as a function of solar and viewing geometry, has application to 
remote sensing problems of inhomogeneous cloud fields. One such example is the retrieval of 
cloud droplet effective radius in vertically inhomogeneous clouds. Average scattering statistics 
are also useful in estimating horizontal transport in plane-parallel clouds. Though the emphasis 
has been on terrestrial cloud remote sensing problems, the superposition formulae are applicable 
to any plane-parallel, vertically inhomogeneous, multiple scattering medium with arbitrary 
illumination. 
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